Йордановы супералгебры с разрешимой чëтной частью
В.И. Жклябин, V. N. Željabin, V. N. Želǎbin, V. N. Željabin (1995)
Algebra i Logika
Similarity:
В.И. Жклябин, V. N. Željabin, V. N. Želǎbin, V. N. Željabin (1995)
Algebra i Logika
Similarity:
В.Н. Желябин, V.N. Željabin, V.N. Želǎbin, V.N. Željabin (1999)
Algebra i Logika
Similarity:
Л.А. Лагутина (1988)
Algebra i Logika
Similarity:
Е.И. Зельманов (1979)
Algebra i Logika
Similarity:
В.Г. Скосырский (1993)
Algebra i Logika
Similarity:
И.П. Шестаков (1993)
Algebra i Logika
Similarity:
Е.И. Зельманов (1978)
Algebra i Logika
Similarity:
В.Н. Желябин, V. N. Željabin, V. N. Želǎbin, V. N. Željabin (1997)
Algebra i Logika
Similarity:
Sara Shafiq, Muhammad Aslam (2017)
Open Mathematics
Similarity:
In this paper, the notions of Jordan homomorphism and Jordan derivation of inverse semirings are introduced. A few results of Herstein and Brešar on Jordan homomorphisms and Jordan derivations of rings are generalized in the setting of inverse semirings.
В.Г. Скосырский, V. G. Skosyrskij, V. G. Skosyrskij, V. G. Skosyrskij (1994)
Algebra i Logika
Similarity:
Santos González Jiménez, Consuelo Martínez López (1987)
Extracta Mathematicae
Similarity:
He Yuan, Liangyun Chen (2016)
Colloquium Mathematicae
Similarity:
We study Jordan (θ,θ)-superderivations and Jordan triple (θ,θ)-superderivations of superalgebras, using the theory of functional identities in superalgebras. As a consequence, we prove that if A = A₀ ⊕ A₁ is a prime superalgebra with deg(A₁) ≥ 9, then Jordan superderivations and Jordan triple superderivations of A are superderivations of A, and generalized Jordan superderivations and generalized Jordan triple superderivations of A are generalized superderivations of A.