Конечномерные йордановы алгебры, допускающие структуру йордановой биалгебры.
В.Н. Желябин, V.N. Željabin, V.N. Želǎbin, V.N. Željabin (1999)
Algebra i Logika
Similarity:
В.Н. Желябин, V.N. Željabin, V.N. Želǎbin, V.N. Željabin (1999)
Algebra i Logika
Similarity:
Л.А. Лагутина (1988)
Algebra i Logika
Similarity:
М. Слатер (1987)
Algebra i Logika
Similarity:
И.П. Шестаков (1993)
Algebra i Logika
Similarity:
Е.И. Зельманов (1979)
Algebra i Logika
Similarity:
В.Н. Желябин, V. N. Željabin, V. N. Želǎbin, V. N. Željabin (1997)
Algebra i Logika
Similarity:
В.Г. Скосырский (1993)
Algebra i Logika
Similarity:
Е.И. Зельманов (1978)
Algebra i Logika
Similarity:
В.Г. Скосырский, V. G. Skosyrskij, V. G. Skosyrskij, V. G. Skosyrskij (1994)
Algebra i Logika
Similarity:
He Yuan, Liangyun Chen (2016)
Colloquium Mathematicae
Similarity:
We study Jordan (θ,θ)-superderivations and Jordan triple (θ,θ)-superderivations of superalgebras, using the theory of functional identities in superalgebras. As a consequence, we prove that if A = A₀ ⊕ A₁ is a prime superalgebra with deg(A₁) ≥ 9, then Jordan superderivations and Jordan triple superderivations of A are superderivations of A, and generalized Jordan superderivations and generalized Jordan triple superderivations of A are generalized superderivations of A.
А.В. Боровик (1989)
Algebra i Logika
Similarity:
J. Harkness (1893/94)
Bulletin of the New York Mathematical Society
Similarity: