The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Discrete Sobolev inequalities and L p error estimates for finite volume solutions of convection diffusion equations”

Generalized Harten formalism and longitudinal variation diminishing schemes for linear advection on arbitrary grids

Bruno Després, Frédéric Lagoutière (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We study a family of non linear schemes for the numerical solution of linear advection on arbitrary grids in several space dimension. A proof of weak convergence of the family of schemes is given, based on a new Longitudinal Variation Diminishing (LVD) estimate. This estimate is a multidimensional equivalent to the well-known TVD estimate in one dimension. The proof uses a corollary of the Perron-Frobenius theorem applied to a generalized Harten formalism.

The G method for heterogeneous anisotropic diffusion on general meshes

Léo Agélas, Daniele A. Di Pietro, Jérôme Droniou (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In the present work we introduce a new family of cell-centered Finite Volume schemes for anisotropic and heterogeneous diffusion operators inspired by the MPFA L method. A very general framework for the convergence study of finite volume methods is provided and then used to establish the convergence of the new method. Fairly general meshes are covered and a computable sufficient criterion for coercivity is provided. In order to guarantee consistency in the presence of heterogeneous ...

Finite volume schemes for the p-laplacian on cartesian meshes

Boris Andreianov, Franck Boyer, Florence Hubert (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

This paper is concerned with the finite volume approximation of the p-laplacian equation with homogeneous Dirichlet boundary conditions on rectangular meshes. A reconstruction of the norm of the gradient on the mesh’s interfaces is needed in order to discretize the p-laplacian operator. We give a detailed description of the possible nine points schemes ensuring that the solution of the resulting finite dimensional nonlinear system exists and is unique. These schemes, called admissible,...

Two-scale FEM for homogenization problems

Ana-Maria Matache, Christoph Schwab (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The convergence of a two-scale FEM for elliptic problems in divergence form with coefficients and geometries oscillating at length scale ε 1 is analyzed. Full elliptic regularity independent of ε is shown when the solution is viewed as mapping from the slow into the fast scale. Two-scale FE spaces which are able to resolve the ε scale of the solution with work independent of ε and without analytical homogenization are introduced. Robust in ε error estimates for the two-scale FE spaces...

Convergence analysis of a locally stabilized collocated finite volume scheme for incompressible flows

Robert Eymard, Raphaèle Herbin, Jean-Claude Latché, Bruno Piar (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We present and analyse in this paper a novel cell-centered collocated finite volume scheme for incompressible flows. Its definition involves a partition of the set of control volumes; each element of this partition is called a cluster and consists in a few neighbouring control volumes. Under a simple geometrical assumption for the clusters, we obtain that the pair of discrete spaces associating the classical cell-centered approximation for the velocities and cluster-wide constant pressures...