Displaying similar documents to “Mixed Methods for the Approximation of Liquid Crystal Flows”

Mixed finite element approximation for a coupled petroleum reservoir model

Mohamed Amara, Daniela Capatina-Papaghiuc, Bertrand Denel, Peppino Terpolilli (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper, we are interested in the modelling and the finite element approximation of a petroleum reservoir, in axisymmetric form. The flow in the porous medium is governed by the Darcy-Forchheimer equation coupled with a rather exhaustive energy equation. The semi-discretized problem is put under a mixed variational formulation, whose approximation is achieved by means of conservative Raviart-Thomas elements for the fluxes and of piecewise constant elements for the pressure and...

A family of discontinuous Galerkin mixed methods for nearly and perfectly incompressible elasticity

Yongxing Shen, Adrian J. Lew (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We introduce a family of mixed discontinuous Galerkin (DG) finite element methods for nearly and perfectly incompressible linear elasticity. These mixed methods allow the choice of polynomials of any order  ≥ 1 for the approximation of the displacement field, and of order or  − 1 for the pressure space, and are stable for any positive value of the stabilization parameter. We prove the optimal convergence of the displacement and stress fields in both cases, with error estimates that...

A multiscale mortar multipoint flux mixed finite element method

Mary Fanett Wheeler, Guangri Xue, Ivan Yotov (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed a mortar finite element space on a coarse...

A multiscale mortar multipoint flux mixed finite element method

Mary Fanett Wheeler, Guangri Xue, Ivan Yotov (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, we develop a multiscale mortar multipoint flux mixed finite element method for second order elliptic problems. The equations in the coarse elements (or subdomains) are discretized on a fine grid scale by a multipoint flux mixed finite element method that reduces to cell-centered finite differences on irregular grids. The subdomain grids do not have to match across the interfaces. Continuity of flux between coarse elements is imposed a mortar finite element space on a coarse...