Displaying similar documents to “Medical image – based computational model of pulsatile flow in saccular aneurisms”

Isogeometric analysis for fluid flow problems

Bastl, Bohumír, Brandner, Marek, Egermaier, Jiří, Michálková, Kristýna, Turnerová, Eva

Similarity:

The article is devoted to the simulation of viscous incompressible fluid flow based on solving the Navier-Stokes equations. As a numerical model we chose isogeometrical approach. Primary goal of using isogemetric analysis is to be always geometrically exact, independently of the discretization, and to avoid a time-consuming generation of meshes of computational domains. For higher Reynolds numbers, we use stabilization techniques SUPG and PSPG. All methods mentioned in the paper are...

Computation of the drag force on a sphere close to a wall

David Gérard-Varet, Matthieu Hillairet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.

On mathematical modelling of gust response using the finite element method

Sváček, Petr, Horáček, Jaromír

Similarity:

In this paper the numerical approximation of aeroelastic response to sudden gust is presented. The fully coupled formulation of two dimensional incompressible viscous fluid flow over a flexibly supported structure is used. The flow is modelled with the system of Navier-Stokes equations written in Arbitrary Lagrangian-Eulerian form and coupled with system of ordinary differential equations describing the airfoil vibrations with two degrees of freedom. The Navier-Stokes equations are spatially...

Computation of the drag force on a sphere close to a wall

David Gérard-Varet, Matthieu Hillairet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.

Computation of the drag force on a sphere close to a wall

David Gérard-Varet, Matthieu Hillairet (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We consider the effect of surface roughness on solid-solid contact in a Stokes flow. Various models for the roughness are considered, and a unified methodology is given to derive the corresponding asymptotics of the drag force in the close-contact limit. In this way, we recover and clarify the various expressions that can be found in previous studies.

Dimension reduction for incompressible pipe and open channel flow including friction

Ersoy, Mehmet

Similarity:

We present the full derivation of a one-dimensional free surface pipe or open channel flow model including friction with non constant geometry. The free surface model is obtained from the three-dimensional incompressible Navier-Stokes equations under shallow water assumptions with prescribed "well-suited" boundary conditions.

Numerical simulation of a viscoelastic fluid with a preconditioned Schwarz method

Luís Borges, Adélia Sequeira (2008)

Banach Center Publications

Similarity:

In this paper we apply a domain decomposition method to approach the solution of a non-Newtonian viscoelastic Oldroyd-B model. The numerical scheme is based on a fixed-point argument applied to the original non-linear system of partial differential equations decoupled into a Navier-Stokes system and a tensorial transport equation. Using a modified Schwarz algorithm, involving block preconditioners for the Navier-Stokes equations, the decoupled problems are solved iteratively. Numerical...