Displaying similar documents to “Mathematical analysis of a spectral hyperviscosity LES model for the simulation of turbulent flows”

Vorticity dynamics and turbulence models for Large-Eddy Simulations

Georges-Henri Cottet, Delia Jiroveanu, Bertrand Michaux (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We consider in this paper the problem of finding appropriate models for Large Eddy Simulations of turbulent incompressible flows from a mathematical point of view. The Smagorinsky model is analyzed and the vorticity formulation of the Navier–Stokes equations is used to explore more efficient subgrid-scale models as minimal regularizations of these equations. Two classes of variants of the Smagorinsky model emerge from this approach: a model based on anisotropic turbulent viscosity...

Vorticity dynamics and turbulence models for large-Eddy simulations

Georges-Henri Cottet, Delia Jiroveanu, Bertrand Michaux (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We consider in this paper the problem of finding appropriate models for Large Eddy Simulations of turbulent incompressible flows from a mathematical point of view. The Smagorinsky model is analyzed and the vorticity formulation of the Navier–Stokes equations is used to explore more efficient subgrid-scale models as minimal regularizations of these equations. Two classes of variants of the Smagorinsky model emerge from this approach: a model based on anisotropic turbulent viscosity and...

On Bardina and Approximate Deconvolution Models

Roger Lewandowski (2011-2012)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

We first outline the procedure of averaging the incompressible Navier-Stokes equations when the flow is turbulent for various type of filters. We introduce the turbulence model called Bardina’s model, for which we are able to prove existence and uniqueness of a distributional solution. In order to reconstruct some of the flow frequencies that are underestimated by Bardina’s model, we next introduce the approximate deconvolution model (ADM). We prove existence and uniqueness of a “regular...

Longtime behavior of solutions of a Navier-Stokes/Cahn-Hilliard system

Helmut Abels (2009)

Banach Center Publications

Similarity:

We study a diffuse interface model for the flow of two viscous incompressible Newtonian fluids of the same density in a bounded domain. The fluids are assumed to be macroscopically immiscible, but a partial mixing in a small interfacial region is assumed in the model. Moreover, diffusion of both components is taken into account. This leads to a coupled Navier-Stokes/Cahn-Hilliard system, which can describe the evolution of droplet formation and collision during the flow. We review some...

Lagrangian approximations and weak solutions of the Navier-Stokes equations

Werner Varnhorn (2008)

Banach Center Publications

Similarity:

The motion of a viscous incompressible fluid flow in bounded domains with a smooth boundary can be described by the nonlinear Navier-Stokes equations. This description corresponds to the so-called Eulerian approach. We develop a new approximation method for the Navier-Stokes equations in both the stationary and the non-stationary case by a suitable coupling of the Eulerian and the Lagrangian representation of the flow, where the latter is defined by the trajectories of the particles...