Displaying similar documents to “Stick-slip transition capturing by using an adaptive finite element method”

Stick-slip transition capturing by using an adaptive finite element method

Nicolas Roquet, Pierre Saramito (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The numerical modeling of the fully developed Poiseuille flow of a newtonian fluid in a square section with slip yield boundary condition at the wall is presented. The stick regions in outer corners and the slip region in the center of the pipe faces are exhibited. Numerical computations cover the complete range of the dimensionless number describing the slip yield effect, from a full slip to a full stick flow regime. The resolution of variational inequalities describing the flow is...

The blocking of an inhomogeneous Bingham fluid. Applications to landslides

Patrick Hild, Ioan R. Ionescu, Thomas Lachand-Robert, Ioan Roşca (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This work is concerned with the flow of a viscous plastic fluid. We choose a model of Bingham type taking into account inhomogeneous yield limit of the fluid, which is well-adapted in the description of landslides. After setting the general threedimensional problem, the blocking property is introduced. We then focus on necessary and sufficient conditions such that blocking of the fluid occurs. The anti-plane flow in twodimensional and onedimensional cases is considered. A variational...

Validation of numerical simulations of a simple immersed boundary solver for fluid flow in branching channels

Keslerová, Radka, Lancmanová, Anna, Bodnár, Tomáš

Similarity:

This work deals with the flow of incompressible viscous fluids in a two-dimensional branching channel. Using the immersed boundary method, a new finite difference solver was developed to interpret the channel geometry. The numerical results obtained by this new solver are compared with the numerical simulations of the older finite volume method code and with the results obtained with OpenFOAM. The aim of this work is to verify whether the immersed boundary method is suitable for fluid...