The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Error estimates in the fast multipole method for scattering problems Part 1: Truncation of the Jacobi-Anger series”

Error estimates in the Fast Multipole Method for scattering problems Part 2: Truncation of the Gegenbauer series

Quentin Carayol, Francis Collino (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of the Helmholtz equation, e i | u - v | 4 π i | u - v | , which is the core of the Fast Multipole Method for the integral equations. We consider the truncated series where the summation is performed over the indices L . We prove that if v = | v | is large enough, the truncated series gives rise to an error lower than as soon as satisfies L + 1 2 v + C W 2 3 ( K ( α ) ϵ - δ v γ ) v 1 3 where  is the Lambert function, K ( α ) depends...

Lipschitz stability in the determination of the principal part of a parabolic equation

Ganghua Yuan, Masahiro Yamamoto (2008)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

Let be one solution to t y ( t , x ) - i , j = 1 n j ( a i j ( x ) i y ( t , x ) ) = h ( t , x ) , 0 < t < T , x Ω with a non-homogeneous term , and y | ( 0 , T ) × Ω = 0 , where Ω n is a bounded domain. We discuss an inverse problem of determining unknown functions by { ν y ( h ) | ( 0 , T ) × Γ 0 , y ( h ) ( θ , · ) } 1 0 after selecting input sources h 1 , . . . , h 0 suitably, where Γ 0 is an arbitrary subboundary, ν denotes the normal derivative, 0 < θ < T and 0 . In the case of 0 = ( n + 1 ) 2 n / 2 , we prove the Lipschitz stability in the inverse problem if we choose ( h 1 , . . . , h 0 ) from a set { C 0 ( ( 0 , T ) × ω ) } 0 with an arbitrarily fixed subdomain ω Ω . Moreover we can take 0 = ( n + 3 ) n / 2 by making special choices...

Entire solutions in 2 for a class of Allen-Cahn equations

Francesca Alessio, Piero Montecchiari (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

We consider a class of semilinear elliptic equations of the form 15.7cm - ε 2 Δ u ( x , y ) + a ( x ) W ' ( u ( x , y ) ) = 0 , ( x , y ) 2 where ε > 0 , a : is a periodic, positive function and W : is modeled on the classical two well Ginzburg-Landau potential W ( s ) = ( s 2 - 1 ) 2 . We look for solutions to ([see full textsee full text]) which verify the asymptotic conditions u ( x , y ) ± 1 as x ± uniformly with respect to y . We show variational methods that if is sufficiently small and is not constant, then ([see full textsee full text]) admits infinitely many of such solutions,...

Threshold Circuits for Iterated Matrix Product and Powering

Carlo Mereghetti, Beatrice Palano (2010)

RAIRO - Theoretical Informatics and Applications

Similarity:

The complexity of computing, via threshold circuits, the and of fixed-dimension k × k matrices with integer or rational entries is studied. We call these two problems 𝖨𝖬𝖯 𝗄 and 𝖬𝖯𝖮𝖶 𝗄 , respectively, for short. We prove that: (i) For k 2 , 𝖨𝖬𝖯 𝗄 does not belong to TC 0 , unless TC 0 = NC 1 .newline (ii) For : 𝖨𝖬𝖯 2 belongs to TC 0 while, for k 3 , 𝖨𝖬𝖯 𝗄 does not belong to TC 0 , unless TC 0 = NC 1 . (iii) For any , 𝖬𝖯𝖮𝖶 𝗄 belongs to TC 0 .