Displaying similar documents to “Transport in a molecular motor system”

Gravitational collapse of a Brownian gas

Clément Sire, Pierre-Henri Chavanis (2004)

Banach Center Publications

Similarity:

We investigate a model describing the dynamics of a gas of self-gravitating Brownian particles. This model can also have applications for the chemotaxis of bacterial populations. We focus here on the collapse phase obtained at sufficiently low temperature/energy and on the post-collapse regime following the singular time where the central density diverges. Several analytical results are illustrated by numerical simulations.

Computer Simulation of Protein-Protein Association in Photosynthesis

I.B. Kovalenko, A.M. Abaturova, A.N. Diakonova, O.S. Knyazeva, D.M. Ustinin, S.S. Khruschev, G.Yu. Riznichenko, A.B. Rubin (2011)

Mathematical Modelling of Natural Phenomena

Similarity:

The paper is devoted to the method of computer simulation of protein interactions taking part in photosynthetic electron transport reactions. Using this method we have studied kinetic characteristics of protein-protein complex formation for four pairs of proteins involved in photosynthesis at a variety of ionic strength values. Computer simulations describe non-monotonic dependences of complex formation rates on the ionic strength as the ...

On the control of the difference between two Brownian motions: an application to energy markets modeling

Thomas Deschatre (2016)

Dependence Modeling

Similarity:

We derive a model based on the structure of dependence between a Brownian motion and its reflection according to a barrier. The structure of dependence presents two states of correlation: one of comonotonicity with a positive correlation and one of countermonotonicity with a negative correlation. This model of dependence between two Brownian motions B1 and B2 allows for the value of [...] to be higher than 1/2 when x is close to 0, which is not the case when the dependence is modeled...

Motor-Mediated Microtubule Self-Organization in Dilute and Semi-Dilute Filament Solutions

S. Swaminathan, F. Ziebert, I. S. Aranson, D. Karpeev (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We study molecular motor-induced microtubule self-organization in dilute and semi-dilute filament solutions. In the dilute case, we use a probabilistic model of microtubule interaction via molecular motors to investigate microtubule bundle dynamics. Microtubules are modeled as polar rods interacting through fully inelastic, binary collisions. Our model indicates that initially disordered systems of interacting rods exhibit an orientational...