Displaying similar documents to “Coupling Darcy and Stokes equations for porous media with cracks”

Error estimates for Stokes problem with Tresca friction conditions

Mekki Ayadi, Leonardo Baffico, Mohamed Khaled Gdoura, Taoufik Sassi (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

In this paper, we present and study a mixed variational method in order to approximate, with the finite element method, a Stokes problem with Tresca friction boundary conditions. These non-linear boundary conditions arise in the modeling of mold filling process by polymer melt, which can slip on a solid wall. The mixed formulation is based on a dualization of the non-differentiable term which define the slip conditions. Existence and uniqueness of both continuous and discrete solutions...

Enabling numerical accuracy of Navier-Stokes-α through deconvolution and enhanced stability

Carolina C. Manica, Monika Neda, Maxim Olshanskii, Leo G. Rebholz (2011)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We propose and analyze a finite element method for approximating solutions to the Navier-Stokes-alpha model (NS-) that utilizes approximate deconvolution and a modified grad-div stabilization and greatly improves accuracy in simulations. Standard finite element schemes for NS- suffer from two major sources of error if their solutions are considered approximations to true fluid flow: (1) the consistency error arising from filtering; and (2) the dramatic effect of the large pressure error...

An efficient computational framework for reduced basis approximation and a posteriori error estimation of parametrized Navier–Stokes flows

Andrea Manzoni (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

We present the current Reduced Basis framework for the efficient numerical approximation of parametrized steady Navier–Stokes equations. We have extended the existing setting developed in the last decade (see [S. Deparis, 46 (2008) 2039–2067; A. Quarteroni and G. Rozza, 23 (2007) 923–948; K. Veroy and A.T. Patera, 47 (2005) 773–788]) to more general affine and nonaffine parametrizations (such as volume-based techniques), to a simultaneous velocity-pressure error estimates and to a fully...