Quasi-metrizable spaces with a bicomplete structure.
Salvador Romaguera, Sergio Salbany (1992)
Extracta Mathematicae
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Salvador Romaguera, Sergio Salbany (1992)
Extracta Mathematicae
Similarity:
Salvador Romaguera, Juan Tarrés (1993)
Extracta Mathematicae
Similarity:
Bent Fuglede (1971)
Annales de l'institut Fourier
Similarity:
This is a general study of an increasing, countably subadditive set function, called a capacity, and defined on the subsets of a topological space . The principal aim is the study of the “quasi-topological” properties of subsets of , or of numerical functions on , with respect to such a capacity . Analogues are obtained to various important properties of the fine topology in potential theory, notably the quasi Lindelöf principle (Doob), the existence of a fine support (Getoor), and...
Olivier Olela Otafudu, Zechariah Mushaandja (2017)
Topological Algebra and its Applications
Similarity:
We show that the image of a q-hyperconvex quasi-metric space under a retraction is q-hyperconvex. Furthermore, we establish that quasi-tightness and quasi-essentiality of an extension of a T0-quasi-metric space are equivalent.
Salvador Romaguera, Michel Schellekens (1998)
Extracta Mathematicae
Similarity:
Elena Alemany, Salvador Romaguera (1996)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We characterize the quasi-metric spaces which have a quasi-metric half-completion and deduce that each paracompact co-stable quasi-metric space having a quasi-metric half-completion is metrizable. We also characterize the quasi-metric spaces whose bicompletion is quasi-metric and it is shown that the bicompletion of each quasi-metric compatible with a quasi-metrizable space is quasi-metric if and only if is finite.