The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Pseudo-valuation rings. II”

Fixed-place ideals in commutative rings

Ali Rezaei Aliabad, Mehdi Badie (2013)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

Let I be a semi-prime ideal. Then P Min ( I ) is called irredundant with respect to I if I P P Min ( I ) P . If I is the intersection of all irredundant ideals with respect to I , it is called a fixed-place ideal. If there are no irredundant ideals with respect to I , it is called an anti fixed-place ideal. We show that each semi-prime ideal has a unique representation as an intersection of a fixed-place ideal and an anti fixed-place ideal. We say the point p β X is a fixed-place point if O p ( X ) is a fixed-place ideal. In...

Star-invertible ideals of integral domains

Gyu Whan Chang, Jeanam Park (2003)

Bollettino dell'Unione Matematica Italiana

Similarity:

Let be a star-operation on R and s the finite character star-operation induced by . The purpose of this paper is to study when = v or s = t . In particular, we prove that if every prime ideal of R is -invertible, then = v , and that if R is a unique -factorable domain, then R is a Krull domain.

Isolated points and redundancy

P. Alirio J. Peña, Jorge E. Vielma (2011)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We describe the isolated points of an arbitrary topological space ( X , τ ) . If the τ -specialization pre-order on X has enough maximal elements, then a point x X is an isolated point in ( X , τ ) if and only if x is both an isolated point in the subspaces of τ -kerneled points of X and in the τ -closure of { x } (a special case of this result is proved in Mehrvarz A.A., Samei K., , J. Sci. Islam. Repub. Iran (1999), no. 3, 193–196). This result is applied to an arbitrary subspace of the prime spectrum Spec ( R ) of...