The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Tree and local computations in a cross–entropy minimization problem with marginal constraints”

A backward selection procedure for approximating a discrete probability distribution by decomposable models

Francesco M. Malvestuto (2012)

Kybernetika

Similarity:

Decomposable (probabilistic) models are log-linear models generated by acyclic hypergraphs, and a number of nice properties enjoyed by them are known. In many applications the following selection problem naturally arises: given a probability distribution p over a finite set V of n discrete variables and a positive integer k , find a decomposable model with tree-width k that best fits p . If is the generating hypergraph of a decomposable model and p is the estimate of p under the model,...

Programming and Testing a Two-Tree Algorithm

Vassilev, Tzvetalin, Ammerlaan, Joanna (2013)

Serdica Journal of Computing

Similarity:

ACM Computing Classification System (1998): G.2.2, F.2.2. Recently, Markov, Vassilev and Manev [2] proposed an algorithm for finding the longest path in 2-trees. In this paper, we describe an implementation of the algorithm. We briefly discuss the algorithm and present example that helps the reader grasp the main algorithmic ideas. Further, we discuss the important stages in the implementation of the algorithm and justify the decisions taken. Then, we present experimental...

Approximation algorithms for metric tree cover and generalized tour and tree covers

Viet Hung Nguyen (2007)

RAIRO - Operations Research

Similarity:

Given a weighted undirected graph , a tree (respectively tour) cover of an edge-weighted graph is a set of edges which forms a tree (resp. closed walk) and covers every other edge in the graph. The tree (resp. tour) cover problem is of finding a minimum weight tree (resp. tour) cover of . Arkin, Halldórsson and Hassin (1993) give approximation algorithms with factors respectively 3.5 and 5.5. Later Könemann, Konjevod, Parekh, and Sinha (2003) study the linear programming relaxations...