The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A strong invariance principle for negatively associated random fields”

Limit theorems for U-statistics indexed by a one dimensional random walk

Nadine Guillotin-Plantard, Véronique Ladret (2005)

ESAIM: Probability and Statistics

Similarity:

Let ( S n ) n 0 be a -random walk and ( ξ x ) x be a sequence of independent and identically distributed -valued random variables, independent of the random walk. Let h be a measurable, symmetric function defined on 2 with values in . We study the weak convergence of the sequence 𝒰 n , n , with values in D [ 0 , 1 ] the set of right continuous real-valued functions with left limits, defined by i , j = 0 [ n t ] h ( ξ S i , ξ S j ) , t [ 0 , 1 ] . Statistical applications are presented, in particular we prove a strong law of large numbers for...

Central limit theorem for sampled sums of dependent random variables

Nadine Guillotin-Plantard, Clémentine Prieur (2010)

ESAIM: Probability and Statistics

Similarity:

We prove a central limit theorem for linear triangular arrays under weak dependence conditions. Our result is then applied to dependent random variables sampled by a -valued transient random walk. This extends the results obtained by [N. Guillotin-Plantard and D. Schneider, (2003) 477–497]. An application to parametric estimation by random sampling is also provided.