Problems in Boolean algebras
R. Bonnet (1976)
Annales scientifiques de l'Université de Clermont. Mathématiques
Similarity:
R. Bonnet (1976)
Annales scientifiques de l'Université de Clermont. Mathématiques
Similarity:
Aleksander Błaszczyk, Andrzej Kucharski, Sławomir Turek (2014)
Open Mathematics
Similarity:
The aim of this paper is to show that every infinite Boolean algebra which admits a countable minimally acting group contains a dense projective subalgebra.
Lutz Heindorf (1996)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We prove that a Boolean algebra is countable iff its subalgebra lattice admits a continuous complementation.
Stanislav Krajči, Peter Vojtáš (1995)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity: