Problems in Boolean algebras
R. Bonnet (1976)
Annales scientifiques de l'Université de Clermont. Mathématiques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
R. Bonnet (1976)
Annales scientifiques de l'Université de Clermont. Mathématiques
Similarity:
Aleksander Błaszczyk, Andrzej Kucharski, Sławomir Turek (2014)
Open Mathematics
Similarity:
The aim of this paper is to show that every infinite Boolean algebra which admits a countable minimally acting group contains a dense projective subalgebra.
Lutz Heindorf (1996)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We prove that a Boolean algebra is countable iff its subalgebra lattice admits a continuous complementation.
Stanislav Krajči, Peter Vojtáš (1995)
Acta Universitatis Carolinae. Mathematica et Physica
Similarity: