The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the splitting number and Mazurkiewicz's theorem”

Borel sets with large squares

Saharon Shelah (1999)

Fundamenta Mathematicae

Similarity:

 For a cardinal μ we give a sufficient condition μ (involving ranks measuring existence of independent sets) for: μ if a Borel set B ⊆ ℝ × ℝ contains a μ-square (i.e. a set of the form A × A with |A| =μ) then it contains a 2 0 -square and even a perfect square, and also for μ ' if ψ L ω 1 , ω has a model of cardinality μ then it has a model of cardinality continuum generated in a “nice”, “absolute” way. Assuming M A + 2 0 > μ for transparency, those three conditions ( μ , μ and μ ' ) are equivalent, and from this we...

Non-Glimm–Effros equivalence relations at second projective level

Vladimir Kanovei (1997)

Fundamenta Mathematicae

Similarity:

A model is presented in which the Σ 2 1 equivalence relation xCy iff L[x]=L[y] of equiconstructibility of reals does not admit a reasonable form of the Glimm-Effros theorem. The model is a kind of iterated Sacks generic extension of the constructible model, but with an “ill“founded “length” of the iteration. In another model of this type, we get an example of a Π 2 1 non-Glimm-Effros equivalence relation on reals. As a more elementary application of the technique of “ill“founded Sacks iterations,...