Bases in the spaces and
S. J. Szarek (1979-1980)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
S. J. Szarek (1979-1980)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
James R. Holub (1998)
Annales Polonici Mathematici
Similarity:
E. Tutaj has introduced classes of Schauder bases termed "unconditional-like" (UL) and "unconditional-like*" (UL*) whose intersection is the class of unconditional bases. In view of this association with unconditional bases, it is interesting to note that there exist Banach spaces which have no unconditional basis and yet have a basis of one of these two types (e.g., the space 𝓞[0,1]). In the same spirit, we show in this paper that the space of all compact operators on a reflexive Banach...
Kung-Wei Yang (1971)
Compositio Mathematica
Similarity:
Pushkin, L. (2002)
Lobachevskii Journal of Mathematics
Similarity:
K. Kazarian (1982)
Studia Mathematica
Similarity:
Aleksandar Krapež, M.A. Taylor (1985)
Publications de l'Institut Mathématique
Similarity:
G. Schechtman (1978-1979)
Séminaire Analyse fonctionnelle (dit "Maurey-Schwartz")
Similarity:
Ondrej F. K. Kalenda (2002)
Colloquium Mathematicae
Similarity:
We prove, among other things, that the space C[0,ω₂] has no countably norming Markushevich basis. This answers a question asked by G. Alexandrov and A. Plichko.
CSTUG editorial board (2009)
Zpravodaj Československého sdružení uživatelů TeXu
Similarity:
CSTUG editorial board (2009)
Zpravodaj Československého sdružení uživatelů TeXu
Similarity:
Albouy, Olivier, Kibler, Maurice R. (2007)
SIGMA. Symmetry, Integrability and Geometry: Methods and Applications [electronic only]
Similarity: