Displaying similar documents to “Discrete Sobolev inequalities and Lp error estimates for finite volume solutions of convection diffusion equations”

An Adaptive Multi-level method for Convection Diffusion Problems

Martine Marion, Adeline Mollard (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this article we introduce an adaptive multi-level method in space and time for convection diffusion problems. The scheme is based on a multi-level spatial splitting and the use of different time-steps. The temporal discretization relies on the characteristics method. We derive an error estimate and design a corresponding adaptive algorithm. The efficiency of the multi-level method is illustrated by numerical experiments, in particular for a convection-dominated problem. ...

Mesh Refinement For Stabilized Convection Diffusion Equations

B. Achchab, M. El Fatini, A. Souissi (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

We derive a residual a posteriori error estimates for the subscales stabilization of convection diffusion equation. The estimator yields upper bound on the error which is global and lower bound that is local

A new exponentially fitted triangular finite element method for the continuity equations in the drift-diffusion model of semiconductor devices

Song Wang (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this paper we present a novel exponentially fitted finite element method with triangular elements for the decoupled continuity equations in the drift-diffusion model of semiconductor devices. The continuous problem is first formulated as a variational problem using a weighted inner product. A Bubnov-Galerkin finite element method with a set of piecewise exponential basis functions is then proposed. The method is shown to be stable and can be regarded as an extension to two dimensions...