Displaying similar documents to “An upwinding mixed finite element method for a mean field model of superconducting vortices”

Instability of mixed finite elements for Richards' equation

Březina, Jan

Similarity:

Richards' equation is a widely used model of partially saturated flow in a porous medium. In order to obtain conservative velocity field several authors proposed to use mixed or mixed-hybrid schemes to solve the equation. In this paper, we shall analyze the mixed scheme on 1D domain and we show that it violates the discrete maximum principle which leads to catastrophic oscillations in the solution.

A mixed–FEM and BEM coupling for a three-dimensional eddy current problem

Salim Meddahi, Virginia Selgas (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We study in this paper the electromagnetic field generated in a conductor by an alternating current density. The resulting interface problem (see Bossavit (1993)) between the metal and the dielectric medium is treated by a mixed–FEM and BEM coupling method. We prove that our BEM-FEM formulation is well posed and that it leads to a convergent Galerkin method.

Mixed finite element approximation of 3D contact problems with given friction: Error analysis and numerical realization

Jaroslav Haslinger, Taoufik Sassi (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

This contribution deals with a mixed variational formulation of 3D contact problems with the simplest model involving friction. This formulation is based on a dualization of the set of admissible displacements and the regularization of the non-differentiable term. Displacements are approximated by piecewise linear elements while the respective dual variables by piecewise constant functions on a dual partition of the contact zone. The rate of convergence is established provided that...