Displaying similar documents to “Mesh Refinement For Stabilized Convection Diffusion Equations”

A Posteriori Error Estimates on Stars for Convection Diffusion Problem

B. Achchab, A. Agouzal, K. Bouihat (2010)

Mathematical Modelling of Natural Phenomena

Similarity:

In this paper, a new a posteriori error estimator for nonconforming convection diffusion approximation problem, which relies on the small discrete problems solution in stars, has been established. It is equivalent to the energy error up to data oscillation without any saturation assumption nor comparison with residual estimator

On the quality of local flux reconstructions for guaranteed error bounds

Vejchodský, Tomáš

Similarity:

In this contribution we consider elliptic problems of a reaction-diffusion type discretized by the finite element method and study the quality of guaranteed upper bounds of the error. In particular, we concentrate on complementary error bounds whose values are determined by suitable flux reconstructions. We present numerical experiments comparing the performance of the local flux reconstruction of Ainsworth and Vejchodsky [2] and the reconstruction of Braess and Schöberl [5]. We evaluate...

Guaranteed and robust error estimates for singularly perturbed reaction–diffusion problems

Ibrahim Cheddadi, Radek Fučík, Mariana I. Prieto, Martin Vohralík (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

We derive error estimates for singularly perturbed reaction–diffusion problems which yield a guaranteed upper bound on the discretization error and are fully and easily computable. Moreover, they are also locally efficient and robust in the sense that they represent local lower bounds for the actual error, up to a generic constant independent in particular of the reaction coefficient. We present our results in the framework of the vertex-centered finite volume method but their nature...

An Adaptive Multi-level method for Convection Diffusion Problems

Martine Marion, Adeline Mollard (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

In this article we introduce an adaptive multi-level method in space and time for convection diffusion problems. The scheme is based on a multi-level spatial splitting and the use of different time-steps. The temporal discretization relies on the characteristics method. We derive an error estimate and design a corresponding adaptive algorithm. The efficiency of the multi-level method is illustrated by numerical experiments, in particular for a convection-dominated problem. ...