Displaying similar documents to “On Chemotaxis Models with Cell Population Interactions”

Dynamics of Erythroid Progenitors and Erythroleukemia

N. Bessonov, F. Crauste, I. Demin, V. Volpert (2009)

Mathematical Modelling of Natural Phenomena

Similarity:

The paper is devoted to mathematical modelling of erythropoiesis, production of red blood cells in the bone marrow. We discuss intra-cellular regulatory networks which determine self-renewal and differentiation of erythroid progenitors. In the case of excessive self-renewal, immature cells can fill the bone marrow resulting in the development of leukemia. We introduce a parameter characterizing the strength of mutation. Depending on its value, leukemia will or will not develop. ...

Influence of diffusion on interactions between malignant gliomas and immune system

Urszula Foryś (2010)

Applicationes Mathematicae

Similarity:

We analyse the influence of diffusion and space distribution of cells in a simple model of interactions between an activated immune system and malignant gliomas, among which the most aggressive one is GBM Glioblastoma Multiforme. It turns out that diffusion cannot affect stability of spatially homogeneous steady states. This suggests that there are two possible outcomes-the solution is either attracted by the positive steady state or by the semitrivial one. The semitrivial steady state...

Evolving morphogenetic fields in the zebra skin pattern based on Turing's morphogen hypothesis

Carlos Graván, Rafael Lahoz-Beltra (2004)

International Journal of Applied Mathematics and Computer Science

Similarity:

One of the classical problems of morphogenesis is to explain how patterns of different animals evolved resulting in a consolidated and stable pattern generation after generation. In this paper we simulated the evolution of two hypothetical morphogens, or proteins, that diffuse across a grid modeling the zebra skin pattern in an embryonic state, composed of pigmented and nonpigmented cells. The simulation experiments were carried out applying a genetic algorithm to the Young cellular...