The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “A theorem on sets of polynomials over a finite field”

Some observations on the Diophantine equation f(x)f(y) = f(z)²

Yong Zhang (2016)

Colloquium Mathematicae

Similarity:

Let f ∈ ℚ [X] be a polynomial without multiple roots and with deg(f) ≥ 2. We give conditions for f(X) = AX² + BX + C such that the Diophantine equation f(x)f(y) = f(z)² has infinitely many nontrivial integer solutions and prove that this equation has a rational parametric solution for infinitely many irreducible cubic polynomials. Moreover, we consider f(x)f(y) = f(z)² for quartic polynomials.

Differentiability of Polynomials over Reals

Artur Korniłowicz (2017)

Formalized Mathematics

Similarity:

In this article, we formalize in the Mizar system [3] the notion of the derivative of polynomials over the field of real numbers [4]. To define it, we use the derivative of functions between reals and reals [9].