Displaying similar documents to “Note on sequences well-spaced and well-distributed among congruence classes”

Congruence submodularity

Ivan Chajda, Radomír Halaš (2002)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

We present a countable infinite chain of conditions which are essentially weaker then congruence modularity (with exception of first two). For varieties of algebras, the third of these conditions, the so called 4-submodularity, is equivalent to congruence modularity. This is not true for single algebras in general. These conditions are characterized by Maltsev type conditions.

Some properties of congurence relations on orthomodular lattices

Gerhard Dorfer (2001)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

In this paper congruences on orthomodular lattices are studied with particular regard to analogies in Boolean algebras. For this reason the lattice of p-ideals (corresponding to the congruence lattice) and the interplay between congruence classes is investigated. From the results adduced there, congruence regularity, uniformity and permutability for orthomodular lattices can be derived easily.

An improved result on irregularities in distribution of sequences of integers

John H. Hodges (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti

Similarity:

In 1972 the author used a result of K.F. Roth on irregularities in distribution of sequences of real numbers to prove an analogous result related to the distribution of sequences of integers in prescribed residue classes. Here, a 1972 result of W.M. Schmidt, which is an improvement of Roth's result, is used to obtain an improved result for sequences of integers.

An improved result on irregularities in distribution of sequences of integers

John H. Hodges (1988)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Similarity:

In 1972 the author used a result of K.F. Roth on irregularities in distribution of sequences of real numbers to prove an analogous result related to the distribution of sequences of integers in prescribed residue classes. Here, a 1972 result of W.M. Schmidt, which is an improvement of Roth's result, is used to obtain an improved result for sequences of integers.