Displaying similar documents to “Corrigendum to the paper 'Periodic analogues of the Euler-Maclaurin and Poisson summation formulas with applications to number theory'”

Quantization of pencils with a gl-type Poisson center and braided geometry

Dimitri Gurevich, Pavel Saponov (2011)

Banach Center Publications

Similarity:

We consider Poisson pencils, each generated by a linear Poisson-Lie bracket and a quadratic Poisson bracket corresponding to a so-called Reflection Equation Algebra. We show that any bracket from such a Poisson pencil (and consequently, the whole pencil) can be restricted to any generic leaf of the Poisson-Lie bracket. We realize a quantization of these Poisson pencils (restricted or not) in the framework of braided affine geometry. Also, we introduce super-analogs of all these Poisson...

The Cauchy problem for the two dimensional Euler–Poisson system

Dong Li, Yifei Wu (2014)

Journal of the European Mathematical Society

Similarity:

The Euler-Poisson system is a fundamental two-fluid model to describe the dynamics of the plasma consisting of compressible electrons and a uniform ion background. In the 3D case Guo [7] first constructed a global smooth irrotational solution by using the dispersive Klein-Gordon effect. It has been conjectured that same results should hold in the two-dimensional case. In our recent work [13], we proved the existence of a family of smooth solutions by constructing the wave operators for...

A note on Poisson approximation by w-functions

M. Majsnerowska (1998)

Applicationes Mathematicae

Similarity:

One more method of Poisson approximation is presented and illustrated with examples concerning binomial, negative binomial and hypergeometric distributions.

A note on Poisson derivations

Jiantao Li (2018)

Czechoslovak Mathematical Journal

Similarity:

Free Poisson algebras are very closely connected with polynomial algebras, and the Poisson brackets are used to solve many problems in affine algebraic geometry. In this note, we study Poisson derivations on the symplectic Poisson algebra, and give a connection between the Jacobian conjecture with derivations on the symplectic Poisson algebra.