Pair correlation of the zeros of the Riemann zeta function in longer ranges
Tsz Ho Chan (2004)
Acta Arithmetica
Similarity:
Tsz Ho Chan (2004)
Acta Arithmetica
Similarity:
H. M. Bui (2014)
Acta Arithmetica
Similarity:
Assuming the Riemann Hypothesis we show that there exist infinitely many consecutive zeros of the Riemann zeta-function whose gaps are greater than 2.9 times the average spacing.
Tsz Ho Chan (2004)
Acta Arithmetica
Similarity:
D.A. Goldston (1988)
Journal für die reine und angewandte Mathematik
Similarity:
Yuichi Kamiya, Masatoshi Suzuki (2004)
Publications de l'Institut Mathématique
Similarity:
P.X. Gallagher (1985)
Journal für die reine und angewandte Mathematik
Similarity:
Habiba Kadiri (2013)
Acta Arithmetica
Similarity:
We prove an explicit bound for N(σ,T), the number of zeros of the Riemann zeta function satisfying ℜ𝔢 s ≥ σ and 0 ≤ ℑ𝔪 s ≤ T. This result provides a significant improvement to Rosser's bound for N(T) when used for estimating prime counting functions.
Miki Hirano (1997)
Manuscripta mathematica
Similarity:
Laurinčikas, Antanas, Steuding, Jörn (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Shaoji Feng (2005)
Acta Arithmetica
Similarity:
H. M. Bui, Brian Conrey, Matthew P. Young (2011)
Acta Arithmetica
Similarity:
D.R. Heath-Brown (1993)
Mathematische Zeitschrift
Similarity:
Timothy Trudgian (2011)
Acta Arithmetica
Similarity:
Georg Illies (2002)
Acta Arithmetica
Similarity:
J. Kaczorowski, A. Perelli (2008)
Acta Arithmetica
Similarity:
R. R. Hall (2006)
Acta Arithmetica
Similarity: