Pair correlation of the zeros of the Riemann zeta function in longer ranges
Tsz Ho Chan (2004)
Acta Arithmetica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Tsz Ho Chan (2004)
Acta Arithmetica
Similarity:
H. M. Bui (2014)
Acta Arithmetica
Similarity:
Assuming the Riemann Hypothesis we show that there exist infinitely many consecutive zeros of the Riemann zeta-function whose gaps are greater than 2.9 times the average spacing.
Tsz Ho Chan (2004)
Acta Arithmetica
Similarity:
D.A. Goldston (1988)
Journal für die reine und angewandte Mathematik
Similarity:
Yuichi Kamiya, Masatoshi Suzuki (2004)
Publications de l'Institut Mathématique
Similarity:
P.X. Gallagher (1985)
Journal für die reine und angewandte Mathematik
Similarity:
Habiba Kadiri (2013)
Acta Arithmetica
Similarity:
We prove an explicit bound for N(σ,T), the number of zeros of the Riemann zeta function satisfying ℜ𝔢 s ≥ σ and 0 ≤ ℑ𝔪 s ≤ T. This result provides a significant improvement to Rosser's bound for N(T) when used for estimating prime counting functions.
Miki Hirano (1997)
Manuscripta mathematica
Similarity:
Laurinčikas, Antanas, Steuding, Jörn (2004)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Shaoji Feng (2005)
Acta Arithmetica
Similarity:
H. M. Bui, Brian Conrey, Matthew P. Young (2011)
Acta Arithmetica
Similarity:
D.R. Heath-Brown (1993)
Mathematische Zeitschrift
Similarity:
Timothy Trudgian (2011)
Acta Arithmetica
Similarity:
Georg Illies (2002)
Acta Arithmetica
Similarity:
J. Kaczorowski, A. Perelli (2008)
Acta Arithmetica
Similarity:
R. R. Hall (2006)
Acta Arithmetica
Similarity: