The Bounded Gap Conjecture and bounds between consecutive Goldbach numbers
János Pintz (2012)
Acta Arithmetica
Similarity:
János Pintz (2012)
Acta Arithmetica
Similarity:
Jan-Christoph Puchta (2003)
Acta Arithmetica
Similarity:
J. Wu (2008)
Acta Arithmetica
Similarity:
J. Wu (2004)
Acta Arithmetica
Similarity:
Yingchun Cai, Minggao Lu (2003)
Acta Arithmetica
Similarity:
Hongze Li (2003)
Acta Arithmetica
Similarity:
Hakan Ali-John Seyalioglu (2009)
Acta Arithmetica
Similarity:
Henryk Iwaniec (1980)
Acta Arithmetica
Similarity:
M. C. Liu, T. Z. Wang (2002)
Acta Arithmetica
Similarity:
Akshaa Vatwani (2018)
Czechoslovak Mathematical Journal
Similarity:
We develop an axiomatic formulation of the higher rank version of the classical Selberg sieve. This allows us to derive a simplified proof of the Zhang and Maynard-Tao result on bounded gaps between primes. We also apply the sieve to other subsequences of the primes and obtain bounded gaps in various settings.
Glyn Harman (2006)
Acta Arithmetica
Similarity:
L. Hajdu, N. Saradha, R. Tijdeman (2012)
Acta Arithmetica
Similarity:
Kaisa Matomäki (2009)
Acta Arithmetica
Similarity:
R. Tijdeman, H. G. Meijer (1974)
Compositio Mathematica
Similarity:
Dieter Wolke (2005)
Acta Arithmetica
Similarity:
Roger C. Baker, Liangyi Zhao (2016)
Acta Arithmetica
Similarity:
We study the gaps between primes in Beatty sequences following the methods in the recent breakthrough by Maynard (2015).