Asymptotics of a dynamic random walk in a random scenery : I. Law of large numbers
N. Guillotin (2000)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
N. Guillotin (2000)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
Rafał Latała, Krzysztof Oleszkiewicz (1995)
Colloquium Mathematicae
Similarity:
Emile Le Page, Marc Peigné (1999)
Revista Matemática Iberoamericana
Similarity:
Let Gd be the semi-direct product of R*+ and Rd, d ≥ 1 and let us consider the product group Gd,N = Gd x RN, N ≥ 1. For a large class of probability measures μ on Gd,N, one prove that there exists ρ(μ) ∈ ]0,1] such that the sequence of finite measures {(n(N+3)/2 / ρ(μ)n) μ*n...
Wojciech Szatzschneider (1978)
Studia Mathematica
Similarity:
Z. Rychlik, D. Szynal (1979)
Banach Center Publications
Similarity:
Matthias Birkner, Rongfeng Sun (2011)
Annales de l'I.H.P. Probabilités et statistiques
Similarity:
We study the continuous time version of the , where conditioned on a continuous time random walk ( )≥0 on ℤ with jump rate > 0, which plays the role of disorder, the law up to time of a second independent random walk ( )0≤≤ with jump rate 1 is Gibbs transformed with weight e (,), where (, ) is the collision local time between and up to time . As the inverse temperature varies, the model undergoes a localization–delocalization...
Émile Le Page, Marc Peigné (1997)
Annales de l'I.H.P. Probabilités et statistiques
Similarity: