On convex sets in abstract linear spaces where no topology is assumed (Hamel bodies and linear boundedness)
D. T. Finkbeiner, O. M. Nikodým (1954)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
D. T. Finkbeiner, O. M. Nikodým (1954)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Carlitz, L. (1956)
Portugaliae mathematica
Similarity:
D. V. Lee (1992)
Acta Arithmetica
Similarity:
Introduction. The problem of determining the formula for , the number of partitions of an integer into elements of a finite set S, that is, the number of solutions in non-negative integers, , of the equation hs₁ s₁ + ... + hsk sk = n, was solved in the nineteenth century (see Sylvester [4] and Glaisher [3] for detailed accounts). The solution is the coefficient of[(1-xs₁)... (1-xsk)]-1, expressions for which they derived. Wright [5] indicated a simpler method by which to find part...
Frank Mantlik (1991)
Studia Mathematica
Similarity:
M. Laczkovich, G. Petruska (1978)
Fundamenta Mathematicae
Similarity:
Zoltán Daróczy, Zsolt Páles (1987)
Stochastica
Similarity:
Munot, P.C. (1972)
Portugaliae mathematica
Similarity:
L. Carlitz (1965)
Acta Arithmetica
Similarity:
L. Carlitz (1976)
Collectanea Mathematica
Similarity: