Displaying similar documents to “Finite-dimensional control of nonlinear parabolic PDE systems with time-dependent spatial domains using empirical eigenfunctions”

Reduced order controllers for Burgers' equation with a nonlinear observer

Jeanne Atwell, Jeffrey Borggaard, Belinda King (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

A method for reducing controllers for systems described by partial differential equations (PDEs) is applied to Burgers' equation with periodic boundary conditions. This approach differs from the typical approach of reducing the model and then designing the controller, and has developed over the past several years into its current form. In earlier work it was shown that functional gains for the feedback control law served well as a dataset for reduced order basis generation via the proper...

A backstepping approach to ship course control

Anna Witkowska, Mirosław Tomera, Roman Smierzchalski (2007)

International Journal of Applied Mathematics and Computer Science

Similarity:

As an object of course control, the ship is characterised by a nonlinear function describing static manoeuvring characteristics that reflect the steady-state relation between the rudder deflection and the rate of turn of the hull. One of the methods which can be used for designing a nonlinear ship course controller is the backstepping method. It is used here for designing two configurations of nonlinear controllers, which are then applied to ship course control. The parameters of the...

Estimation of the output deviation norm for uncertain, discrete-time nonlinear systems in a state dependent form

Przemysław Orłowski (2007)

International Journal of Applied Mathematics and Computer Science

Similarity:

Numerical evaluation of the optimal nonlinear robust control requires estimating the impact of parameter uncertainties on the system output. The main goal of the paper is to propose a method for estimating the norm of an output trajectory deviation from the nominal trajectory for nonlinear uncertain, discrete-time systems. The measure of the deviation allows us to evaluate the robustness of any designed controller. The first part of the paper concerns uncertainty modelling for nonlinear...

Feedback linearization idle-speed control: design and experiments

Rolf Pfiffner, Lino Guzzella (1999)

Kybernetika

Similarity:

This paper proposes a novel nonlinear control algorithm for idle-speed control of a gasoline engine. This controller is based on the feedback linearization approach and extends this technique to the special structure and specifications of the idle-speed problem. Special static precompensations and cascaded loops are used to achieve the desired bandwidth separation between the fast spark and slow air-bypass action. A key element is the inclusion of the (engine-speed dependent) induction...

Robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle

Yuan Jiang, Jiyang Dai (2011)

Kybernetika

Similarity:

This paper treats the question of robust control of chaos in modified FitzHugh-Nagumo neuron model under external electrical stimulation based on internal model principle. We first present the solution of the global robust output regulation problem for output feedback system with nonlinear exosystem. Then we show that the robust control problem for the modified FitzHugh-Nagumo neuron model can be formulated as the global robust output regulation problem and the solvability conditions...

Rotary inverted pendulum: trajectory tracking via nonlinear control techniques

Luis E. Ramos-Velasco, Javier Ruiz, Sergej Čelikovský (2002)

Kybernetika

Similarity:

The nonlinear control techniques are applied to the model of rotary inverted pendulum. The model has two degrees of freedom and is not exactly linearizable. The goal is to control output trajectory of the rotary inverted pendulum asymptotically along a desired reference. Moreover, the designed controller should be robust with respect to specified perturbations and parameters uncertainties. A combination of techniques based on nonlinear normal forms, output regulation and sliding mode...