Displaying similar documents to “Linear repetitive process control theory applied to a physical example”

On the development of SCILAB compatible software for the analysis and control of repetitive processes

Łukasz H. Ładowski, Błażej Cichy, Krzysztof Gałkowski, Eric Rogers (2008)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper further results on the development of a S CILAB compatible software package for the analysis and control of repetitive processes is described. The core of the package consists of a simulation tool which enables the user to inspect the response of a given example to an input, design a control law for stability and/or performance, and also simulate the response of a controlled process to a specified reference signal.

Robust stabilization of discrete linear repetitive processes with switched dynamics

Jacek Bochniak, Krzysztof Galkowski, Eric Rogers, Anton Kummert (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

Repetitive processes constitute a distinct class of 2D systems, i.e., systems characterized by information propagation in two independent directions, which are interesting in both theory and applications. They cannot be controlled by a direct extension of the existing techniques from either standard (termed 1D here) or 2D systems theories. Here we give new results on the design of physically based control laws. These results are for a sub-class of discrete linear repetitive processes...

Delay-dependent robust stability conditions and decay estimates for systems with input delays

Kostas Hrissagis, Olga I. Kosmidou (1998)

Kybernetika

Similarity:

The robust stabilization of uncertain systems with delays in the manipulated variables is considered in this paper. Sufficient conditions are derived that guarantee closed-loop stability under state-feedback control in the presence of nonlinear and/or time-varying perturbations. The stability conditions are given in terms of scalar inequalities and do not require the solution of Lyapunov or Riccati equations. Instead, induced norms and matrix measures are used to yield some easy to test...

On robust stability of neutral systems

Silviu-Iulian Niculescu (2001)

Kybernetika

Similarity:

This paper focuses on the problem of uniform asymptotic stability of a class of linear neutral systems including some constant delays and time-varying cone-bounded nonlinearities. Sufficient stability conditions are derived by taking into account the weighting factors describing the nonlinearities. The proposed results are applied to the stability analysis of a class of lossless transmission line models.

New qualitative methods for stability of delay systems

Erik I. Verriest (2001)

Kybernetika

Similarity:

A qualitative method is explored for analyzing the stability of systems. The approach is a generalization of the celebrated Lyapunov method. Whereas classically, the Lyapunov method is based on the simple comparison theorem, deriving suitable candidate Lyapunov functions remains mostly an art. As a result, in the realm of delay equations, such Lyapunov methods can be quite conservative. The generalization is here in using the comparison theorem directly with a different scalar equation...