Stability of solutions of a nonstandard ordinary differential system by Lyapunov's second method.
Venkatesulu, M., Srinivasu, P.D.N. (1991)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Venkatesulu, M., Srinivasu, P.D.N. (1991)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Andrzej Dzielinski (2005)
International Journal of Applied Mathematics and Computer Science
Similarity:
This paper presents a research effort focused on the problem of robust stability of the closed-loop adaptive system. It is aimed at providing a general framework for the investigation of continuous-time, state-space systems required to track a (stable) reference model. This is motivated by the model reference adaptive control (MRAC) scheme, traditionally considered in such a setting. The application of differential inequlities results to the analysis of the Lyapunov stability for a class...
Venkatesulu, M., Srinivasu, P.D.N. (1992)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
G. K. Kulev, D. D. Bainov (1987)
Collectanea Mathematica
Similarity:
Liu, Xinzhi (1992)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Lakshmikantham, V., Liu, X., Leela, S. (1998)
Mathematical Problems in Engineering
Similarity:
Sivasundaram, S. (2001)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
Lupu, Mircea, Florea, Olivia, Lupu, Ciprian (2009)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Martynyuk, Anatoly A. (1990)
Journal of Applied Mathematics and Stochastic Analysis
Similarity:
J. Auslander, P. Seibert (1964)
Annales de l'institut Fourier
Similarity:
Les auteurs étudient la notion de prolongement au sens de T. Ura et ses relations avec la notion d’ensembles positivement invariants. La stabilité au sens de Liapounoff est équivalente à l’invariance par prolongement. Les auteurs dégagent ensuite la notion de “prolongements abstraits” et les notions de stabilité correspondantes; la stabilité absolue (associée au prolongement minimal transitif) et la stabilité asymptotique jouent un rôle important.