Displaying similar documents to “A new approach to multiple fault diagnosis: A combination of diagnostic matrices, graphs, algebraic and rule-based models. The case of two-layer models”

Double fault distinguishability in linear systems

Jan Maciej Kościelny, Zofia M. Łabęda-Grudziak (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper develops a new approach to double fault isolation in linear systems with the aid of directional residuals. The method of residual generation for computational as well as internal forms is applied. Isolation of double faults is based on the investigation of the coplanarity of the residual vector with the planes defined by the individual pairs of directional fault vectors. Additionally, the method of designing secondary residuals, which are structured and directional, is proposed....

SMAC-FDI: A single model active fault detection and isolation system for unmanned aircraft

Guillaume J.J. Ducard (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

This article presents a single model active fault detection and isolation system (SMAC-FDI) which is designed to efficiently detect and isolate a faulty actuator in a system, such as a small (unmanned) aircraft. This FDI system is based on a single and simple aerodynamic model of an aircraft in order to generate some residuals, as soon as an actuator fault occurs. These residuals are used to trigger an active strategy based on artificial exciting signals that searches within the residuals...

Fault detection and isolation with robust principal component analysis

Yvon Tharrault, Gilles Mourot, José Ragot, Didier Maquin (2008)

International Journal of Applied Mathematics and Computer Science

Similarity:

Principal component analysis (PCA) is a powerful fault detection and isolation method. However, the classical PCA, which is based on the estimation of the sample mean and covariance matrix of the data, is very sensitive to outliers in the training data set. Usually robust principal component analysis is applied to remove the effect of outliers on the PCA model. In this paper, a fast two-step algorithm is proposed. First, the objective was to find an accurate estimate of the covariance...

Switching time estimation and active mode recognition using a data projection method

Assia Hakem, Vincent Cocquempot, Komi Midzodzi Pekpe (2016)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper proposes a data projection method (DPM) to detect a mode switching and recognize the current mode in a switching system. The main feature of this method is that the precise knowledge of the system model, i.e., the parameter values, is not needed. One direct application of this technique is fault detection and identification (FDI) when a fault produces a change in the system dynamics. Mode detection and recognition correspond to fault detection and identification, and switching...

Detection and identification of loss of efficiency faults of flight actuators

Daniel Ossmann, Andreas Varga (2015)

International Journal of Applied Mathematics and Computer Science

Similarity:

We propose linear parameter-varying (LPV) model-based approaches to the synthesis of robust fault detection and diagnosis (FDD) systems for loss of efficiency (LOE) faults of flight actuators. The proposed methods are applicable to several types of parametric (or multiplicative) LOE faults such as actuator disconnection, surface damage, actuator power loss or stall loads. For the detection of these parametric faults, advanced LPV-model detection techniques are proposed, which implicitly...

A Model-Based Fault Detection and Diagnosis Scheme for Distributed Parameter Systems: A Learning Systems Approach

Michael A. Demetriou (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Similarity:

In this note, fault detection techniques based on finite dimensional results are extended and applied to a class of infinite dimensional dynamical systems. This special class of systems assumes linear plant dynamics having an abrupt additive perturbation as the fault. This fault is assumed to be linear in the (unknown) constant (and possibly functional) parameters. An observer-based model estimate is proposed which serves to monitor the system's dynamics for unanticipated failures, and...