Displaying similar documents to “Efficient nonlinear predictive control based on structured neural models”

Nonlinear predictive control based on neural multi-models

Maciej Ławryńczuk, Piotr Tatjewski (2010)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper discusses neural multi-models based on Multi Layer Perceptron (MLP) networks and a computationally efficient nonlinear Model Predictive Control (MPC) algorithm which uses such models. Thanks to the nature of the model it calculates future predictions without using previous predictions. This means that, unlike the classical Nonlinear Auto Regressive with eXternal input (NARX) model, the multi-model is not used recurrently in MPC, and the prediction error is not propagated....

A family of model predictive control algorithms with artificial neural networks

Maciej Ławryńczuk (2007)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper details nonlinear Model-based Predictive Control (MPC) algorithms for MIMO processes modelled by means of neural networks of a feedforward structure. Two general MPC techniques are considered: the one with Nonlinear Optimisation (MPC-NO) and the one with Nonlinear Prediction and Linearisation (MPC-NPL). In the first case a nonlinear optimisation problem is solved in real time on-line. In order to reduce the computational burden, in the second case a neural model of the process...

Soft computing in modelbased predictive control footnotemark

Piotr Tatjewski, Maciej Ławrynczuk (2006)

International Journal of Applied Mathematics and Computer Science

Similarity:

The application of fuzzy reasoning techniques and neural network structures to model-based predictive control (MPC) is studied. First, basic structures of MPC algorithms are reviewed. Then, applications of fuzzy systems of the Takagi-Sugeno type in explicit and numerical nonlinear MPC algorithms are presented. Next, many techniques using neural network modeling to improve structural or computational properties of MPC algorithms are presented and discussed, from a neural network model...

Stabilising solutions to a class of nonlinear optimal state tracking problems using radial basis function networks

Zahir Ahmida, Abdelfettah Charef, Victor Becerra (2005)

International Journal of Applied Mathematics and Computer Science

Similarity:

A controller architecture for nonlinear systems described by Gaussian RBF neural networks is proposed. The controller is a stabilising solution to a class of nonlinear optimal state tracking problems and consists of a combination of a state feedback stabilising regulator and a feedforward neuro-controller. The state feedback stabilising regulator is computed on-line by transforming the tracking problem into a more manageable regulation one, which is solved within the framework of a nonlinear...

Nonlinear system identification using heterogeneous multiple models

Rodolfo Orjuela, Benoît Marx, José Ragot, Didier Maquin (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

Multiple models are recognised by their abilities to accurately describe nonlinear dynamic behaviours of a wide variety of nonlinear systems with a tractable model in control engineering problems. Multiple models are built by the interpolation of a set of submodels according to a particular aggregation mechanism, with the heterogeneous multiple model being of particular interest. This multiple model is characterized by the use of heterogeneous submodels in the sense that their state...

Neural network based identification of hysteresis in human meridian systems

Yonghong Tan, Ruili Dong, Hui Chen, Hong He (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

Developing a model based digital human meridian system is one of the interesting ways of understanding and improving acupuncture treatment, safety analysis for acupuncture operation, doctor training, or treatment scheme evaluation. In accomplishing this task, how to construct a proper model to describe the behavior of human meridian systems is one of the very important issues. From experiments, it has been found that the hysteresis phenomenon occurs in the relations between stimulation...

Motor control neural models and systems theory

Kenji Doya, Hidenori Kimura, Aiko Miyamura (2001)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper, we introduce several system theoretic problems brought forward by recent studies on neural models of motor control. We focus our attention on three topics: (i) the cerebellum and adaptive control, (ii) reinforcement learning and the basal ganglia, and (iii) modular control with multiple models. We discuss these subjects from both neuroscience and systems theory viewpoints with the aim of promoting interplay between the two research communities.