Displaying similar documents to “On the convergence of the wavelet-Galerkin method for nonlinear filtering”

A survey on wavelet methods for (geo) applications.

Willi Freeden, Thorsten Maier, Steffen Zimmermann (2003)

Revista Matemática Complutense

Similarity:

Wavelets originated in 1980's for the analysis of (seismic) signals and have seen an explosion of applications. However, almost all the material is based on wavelets over Euclidean spaces. This paper deals with an approach to the theory and algorithmic aspects of wavelets in a general separable Hilbert space framework. As examples Legendre wavelets on the interval [-1,+1] and scalar and vector spherical wavelets on the unit sphere 'Omega' are discussed in more detail.

On infinitely smooth almost-wavelets with compact support.

M. Berkolaiko, I. Novikov (1993)

Collectanea Mathematica

Similarity:

There are known wavelets with exponential decay on infinity [2,3,4] and wavelets with compact support [5]. But these functions have finite smoothness. It is known that there do not exist infinitely differentiable compactly supported wavelets.

Connectivity, homotopy degree, and other properties of α-localized wavelets on R.

Gustavo Garrigós (1999)

Publicacions Matemàtiques

Similarity:

In this paper, we study general properties of α-localized wavelets and multiresolution analyses, when 1/2 < α ≤ ∞. Related to the latter, we improve a well-known result of A. Cohen by showing that the correspondence m → φ' = Π m(2 ·), between low-pass filters in H(T) and Fourier transforms of α-localized scaling functions (in H(R)), is actually a homeomorphism of topological spaces. We also show that the space of such filters can be regarded as a connected infinite...

Wavelets on the integers.

Philip Gressman (2001)

Collectanea Mathematica

Similarity:

In this paper the theory of wavelets on the integers is developed. For this, one needs to first find analogs of translations and dyadic dilations which appear in the classical theory. Translations in l2(Z) are defined in the obvious way, taking advantage of the additive group structure of the integers. Dyadic dilations, on the other hand, pose a greater problem. In the classical theory of wavelets on the real line, translation T and dyadic dilation T obey the commutativity relation DT^2...

Calderón's conditions and wavelets.

Ziemowit Rzeszotnik (2001)

Collectanea Mathematica

Similarity:

The paper presents the proof of the fact that the discrete Calderón condition characterizes the completeness of an orthonormal wavelet basis.

On the existence of wavelets for non-expansive dilation matrices.

Darrin Speegle (2003)

Collectanea Mathematica

Similarity:

Sets which simultaneously tile Rn by applying powers of an invertible matrix and translations by a lattice are studied. Diagonal matrices A for which there exist sets that tile by powers of A and by integer translations are characterized. A sufficient condition and a necessary condition on the dilations and translations for the existence of such sets are also given. These conditions depend in an essential way on the interplay between the eigenvectors of the dilation matrix and the translation...

The wavelet characterization of the space Weak H¹

Heping Liu (1992)

Studia Mathematica

Similarity:

The space Weak H¹ was introduced and investigated by Fefferman and Soria. In this paper we characterize it in terms of wavelets. Equivalence of four conditions is proved.

Recent developments in wavelet methods for the solution of PDE's

Silvia Bertoluzza (2005)

Bollettino dell'Unione Matematica Italiana

Similarity:

After reviewing some of the properties of wavelet bases, and in particular the property of characterisation of function spaces via wavelet coefficients, we describe two new approaches to, respectively, stabilisation of numerically unstable PDE's and to non linear (adaptive) solution of PDE's, which are made possible by these properties.