Displaying similar documents to “Nonlinear actuator fault estimation observer: An inverse system approach via a T-S fuzzy model”

Observer-based fault-tolerant control against sensor failures for fuzzy systems with time delays

Shaocheng Tong, Gengjiao Yang, Wei Zhang (2011)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper addresses the problems of robust fault estimation and fault-tolerant control for Takagi-Sugeno (T-S) fuzzy systems with time delays and unknown sensor faults. A fuzzy augmented state and fault observer is designed to achieve the system state and sensor fault estimates simultaneously. Furthermore, based on the information of on-line fault estimates, an observer-based dynamic output feedback fault-tolerant controller is developed to compensate for the effect of faults by stabilizing...

New fault tolerant control strategies for nonlinear Takagi-Sugeno systems

Dalil Ichalal, Benoît Marx, José Ragot, Didier Maquin (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

New methodologies for Fault Tolerant Control (FTC) are proposed in order to compensate actuator faults in nonlinear systems. These approaches are based on the representation of the nonlinear system by a Takagi-Sugeno model. Two control laws are proposed requiring simultaneous estimation of the system states and of the occurring actuator faults. The first approach concerns the stabilization problem in the presence of actuator faults. In the second, the system state is forced to track...

Residual generator fuzzy identification for automotive diesel engine fault diagnosis

Silvio Simani (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

Safety in dynamic processes is a concern of rising importance, especially if people would be endangered by serious system failure. Moreover, as the control devices which are now exploited to improve the overall performance of processes include both sophisticated control strategies and complex hardware (input-output sensors, actuators, components and processing units), there is an increased probability of faults. As a direct consequence of this, automatic supervision systems should be...

Generalized reasoning about faults based on the diagnostic matrix

Michał Bartyś (2013)

International Journal of Applied Mathematics and Computer Science

Similarity:

This paper introduces a set of comprehensive general reasoning rules about single faults based on a diagnostic matrix. The reasoning scheme unifies inference about faults based on a conventional binary diagnostic matrix, a two- and three-valued fault isolation system as well as on their fuzzy counterparts. There are introduced and defined notions of alternative and dominant fault signatures, fuzzy fault signatures as well as a matrix of alternative signatures. This matrix is supposed...

An LPV pole-placement approach to friction compensation as an FTC problem

Ron J. Patton, Lejun Chen, Supat Klinkhieo (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

The concept of combining robust fault estimation within a controller system to achieve active Fault Tolerant Control (FTC) has been the subject of considerable interest in the recent literature. The current study is motivated by the need to develop model-based FTC schemes for systems that have no unique equilibria and are therefore difficult to linearise. Linear Parameter Varying (LPV) strategies are well suited to model-based control and fault estimation for such systems. This contribution...

Robust dynamic output feedback fault-tolerant control for Takagi-Sugeno fuzzy systems with interval time-varying delay via improved delay partitioning approach

Chao Sun, Fuli Wang, Xiqin He (2016)

Open Mathematics

Similarity:

This paper addresses the problem of robust fault-tolerant control design scheme for a class of Takagi-Sugeno fuzzy systems subject to interval time-varying delay and external disturbances. First, by using improved delay partitioning approach, a novel n-steps iterative learning fault estimation observer under H ∞ constraint is constructed to achieve estimation of actuator fault. Then, based on the online estimation information, a fuzzy dynamic output feedback fault-tolerant controller...

Robust multisensor fault tolerant model-following MPC design for constrained systems

Alain Yetendje, Maria M. Seron, José A. De Doná (2012)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper, a robust fault-tolerant control strategy for constrained multisensor linear systems, subject to sensor faults and in the presence of bounded state and output disturbances, is proposed. The scheme verifies that, for each sensors-estimator combination, suitable residual variables lie inside pre-computed sets and selects a more appropriate combination based on a chosen criterion. An active fault tolerant output feedback controller yields an MPC-based control law and, by means...

Redundancy relations for fault diagnosis in nonlinear uncertain systems

Alexey Shumsky (2007)

International Journal of Applied Mathematics and Computer Science

Similarity:

The problem of fault detection and isolation in nonlinear uncertain systems is studied within the scope of the analytical redundancy concept. The problem solution involves checking the redundancy relations existing among measured system inputs and outputs. A novel method is proposed for constructing redundancy relations based on system models described by differential equations whose right-hand sides are polynomials. The method involves a nonlinear transformation of the initial system...