Smooth lines on projective planes over two-dimensional algebras and submanifolds with degenerate Gauss maps.
Akivis, Maks A., Goldberg, Vladislav V. (2003)
Beiträge zur Algebra und Geometrie
Similarity:
Akivis, Maks A., Goldberg, Vladislav V. (2003)
Beiträge zur Algebra und Geometrie
Similarity:
Frédéric Han (2010)
Annales de l’institut Fourier
Similarity:
We study the geometry of a general Fano variety of dimension four, genus nine, and Picard number one. We compute its Chow ring and give an explicit description of its variety of lines. We apply these results to study the geometry of non quadratically normal varieties of dimension three in a five dimensional projective space.
Cuypers, Hans, Steinbach, Anja (2004)
Beiträge zur Algebra und Geometrie
Similarity:
Coffman, Adam (2002)
Beiträge zur Algebra und Geometrie
Similarity:
Biondi, P., Lo Re, P.M.L., Storme, L. (2007)
Beiträge zur Algebra und Geometrie
Similarity:
Havlicek, Hans, Riesinger, Rolf (2006)
Beiträge zur Algebra und Geometrie
Similarity:
R. Powers, T. Riedel, P. Sahoo (1993)
Colloquium Mathematicae
Similarity:
Alessandro Arsie (2005)
Revista Matemática Complutense
Similarity:
Quite recently, Alexeev and Nakamura proved that if Y is a stable semi-Abelic variety (SSAV) of dimension g equipped with the ample line bundle O(1), which deforms to a principally polarized Abelian variety, then O(n) is very ample as soon as n ≥ 2g + 1, that is n ≥ 5 in the case of surfaces. Here it is proved, via elementary methods of projective geometry, that in the case of surfaces this bound can be improved to n ≥ 3.
Fortin, Marc, Reutenauer, Christophe (2004)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Odehnal, Boris, Pottmann, Helmut, Wallner, Johannes (2006)
Beiträge zur Algebra und Geometrie
Similarity: