Displaying similar documents to “A note on semicharacters”

Fredholm multipliers of semisimple commutative Banach algebras.

Pietro Aiena (1991)

Extracta Mathematicae

Similarity:

In some recent papers ([1],[2],[3],[4]) we have investigated some general spectral properties of a multiplier defined on a commutative semi-simple Banach algebra. In this paper we expose some aspects concerning the Fredholm theory of multipliers.

Additively spectral-radius preserving surjections between unital semisimple commutative Banach algebras

Osamu Hatori, Go Hirasawa, Takeshi Miura (2010)

Open Mathematics

Similarity:

Let A and B be unital, semisimple commutative Banach algebras with the maximal ideal spaces M A and M B, respectively, and let r(a) be the spectral radius of a. We show that if T: A → B is a surjective mapping, not assumed to be linear, satisfying r(T(a) + T(b)) = r(a + b) for all a; b ∈ A, then there exist a homeomorphism φ: M B → M A and a closed and open subset K of M B such that T a ^ y = T e ^ y a ^ φ y y K T e ^ y a ^ φ y ¯ y M K for all a ∈ A, where e is unit element of A. If, in addition, T e ^ = 1 and T i e ^ = i on M B, then T is an algebra isomorphism. ...

Calkin algebras for Banach spaces with finitely decomposable quotients

Manuel González, José M. Herrera (2003)

Studia Mathematica

Similarity:

For a Banach space X such that all quotients only admit direct decompositions with a number of summands smaller than or equal to n, we show that every operator T on X can be identified with an n × n scalar matrix modulo the strictly cosingular operators SC(X). More precisely, we obtain an algebra isomorphism from the Calkin algebra L(X)/SC(X) onto a subalgebra of the algebra of n × n scalar matrices which is triangularizable when X is indecomposable. From this fact we get some information...

Banach spaces with small Calkin algebras

Manuel González (2007)

Banach Center Publications

Similarity:

Let X be a Banach space. Let 𝓐(X) be a closed ideal in the algebra ℒ(X) of the operators acting on X. We say that ℒ(X)/𝓐(X) is a Calkin algebra whenever the Fredholm operators on X coincide with the operators whose class in ℒ(X)/𝓐(X) is invertible. Among other examples, we have the cases in which 𝓐(X) is the ideal of compact, strictly singular, strictly cosingular and inessential operators, and some other ideals introduced as perturbation classes in Fredholm theory. Our aim is to...

On regularities and Fredholm theory

L. Lindeboom, H. Raubenheimer (2002)

Czechoslovak Mathematical Journal

Similarity:

We investigate the relationship between the regularities and the Fredholm theory in a Banach algebra.