The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Algebras of generalized analytic functions”

Equivalence of analytic and rational functions

J. Bochnak, M. Buchner, W. Kucharz (1997)

Annales Polonici Mathematici

Similarity:

We give a criterion for a real-analytic function defined on a compact nonsingular real algebraic set to be analytically equivalent to a rational function.

A new rational and continuous solution for Hilbert's 17th problem.

Charles N. Delzell, Laureano González-Vega, Henri Lombardi (1992)

Extracta Mathematicae

Similarity:

In this note it is presented a new rational and continuous solution for Hilbert's 17th problem, which asks if an everywhere positive polynomial can be expressed as a sum of squares of rational functions. This solution (Theorem 1) improves the results in [2] in the sense that our parametrized solution is continuous and depends in a rational way on the coefficients of the problem (what is not the case in the solution presented in [2]). Moreover our method simplifies the proof and it is...

Rational interpolants with preassigned poles, theoretical aspects

Amiran Ambroladze, Hans Wallin (1999)

Studia Mathematica

Similarity:

Let ⨍ be an analytic function on a compact subset K of the complex plane ℂ, and let r n ( z ) denote the rational function of degree n with poles at the points b n i i = 1 n and interpolating ⨍ at the points a n i i = 0 n . We investigate how these points should be chosen to guarantee the convergence of r n to ⨍ as n → ∞ for all functions ⨍ analytic on K. When K has no “holes” (see [8] and [3]), it is possible to choose the poles b n i i , n without limit points on K. In this paper we study the case of general compact sets K, when...