Displaying similar documents to “On weak sharp minima in vector optimization with applications to parametric problems”

Non-negative solutions to fast diffusions.

Bjorn E. J. Dahlberg, Carlos E. Kenig (1988)

Revista Matemática Iberoamericana

Similarity:

The purpose of this work is to study the class of non-negative continuous weak solutions of the non-linear evolution equation ∂u/∂t = ∆φ(u),   x ∈ Rn, 0 < t < T ≤ +∞.

The weak Phillips property

Ali Ülger (2001)

Colloquium Mathematicae

Similarity:

Let X be a Banach space. If the natural projection p:X*** → X* is sequentially weak*-weak continuous then the space X is said to have the weak Phillips property. We present several characterizations of the spaces having this property and study its relationships to other Banach space properties, especially the Grothendieck property.

Strong-weak Stackelberg Problems in Finite Dimensional Spaces

Aboussoror, Abdelmalek, Loridan, Pierre (1995)

Serdica Mathematical Journal

Similarity:

We are concerned with two-level optimization problems called strongweak Stackelberg problems, generalizing the class of Stackelberg problems in the strong and weak sense. In order to handle the fact that the considered two-level optimization problems may fail to have a solution under mild assumptions, we consider a regularization involving ε-approximate optimal solutions in the lower level problems. We prove the existence of optimal solutions for such regularized problems and present...