The independence of the axiom of choice from the Boolean prime ideal theorem
J. Halperin (1964)
Fundamenta Mathematicae
Similarity:
J. Halperin (1964)
Fundamenta Mathematicae
Similarity:
Josef Tkadlec (1991)
Colloquium Mathematicae
Similarity:
We fix a Boolean subalgebra B of an orthomodular poset P and study the mappings s:P → [0,1] which respect the ordering and the orthocomplementation in P and which are additive on B. We call such functions B-states on P. We first show that every P possesses "enough" two-valued B-states. This improves the main result in [13], where B is the centre of P. Moreover, it allows us to construct a closure-space representation of orthomodular lattices. We do this in the third section. This result...
J. Łoś (1957)
Fundamenta Mathematicae
Similarity:
J. Łoś, Czesław Ryll-Nardzewski (1955)
Fundamenta Mathematicae
Similarity:
Leopoldo Nachbin (1949)
Fundamenta Mathematicae
Similarity:
P. Ribenboin (1969)
Fundamenta Mathematicae
Similarity:
D. Edwards (1975)
Fundamenta Mathematicae
Similarity:
Eric Schechter (2006)
Fundamenta Mathematicae
Similarity:
The principle that "any product of cofinite topologies is compact" is equivalent (without appealing to the Axiom of Choice) to the Boolean Prime Ideal Theorem.
K. P. Bhaskara Rao, M. Bhaskara Rao (1979)
Czechoslovak Mathematical Journal
Similarity: