Displaying similar documents to “On a problem of V. Klee concerning the Hilbert manifolds”

A homological selection theorem implying a division theorem for Q-manifolds

Taras Banakh, Robert Cauty (2007)

Banach Center Publications

Similarity:

We prove that a space M with Disjoint Disk Property is a Q-manifold if and only if M × X is a Q-manifold for some C-space X. This implies that the product M × I² of a space M with the disk is a Q-manifold if and only if M × X is a Q-manifold for some C-space X. The proof of these theorems exploits the homological characterization of Q-manifolds due to Daverman and Walsh, combined with the existence of G-stable points in C-spaces. To establish the existence of such points we prove (and...

A non-𝒵-compactifiable polyhedron whose product with the Hilbert cube is 𝒵-compactifiable

C. R. Guilbault (2001)

Fundamenta Mathematicae

Similarity:

We construct a locally compact 2-dimensional polyhedron X which does not admit a 𝒵-compactification, but which becomes 𝒵-compactifiable upon crossing with the Hilbert cube. This answers a long-standing question posed by Chapman and Siebenmann in 1976 and repeated in the 1976, 1979 and 1990 versions of Open Problems in Infinite-Dimensional Topology. Our solution corrects an error in the 1990 problem list.