On pairs of independent random variables whose quotients follow some known distribution
I. Kotlarski (1962)
Colloquium Mathematicae
Similarity:
I. Kotlarski (1962)
Colloquium Mathematicae
Similarity:
Slobodanka Janjić (1984)
Publications de l'Institut Mathématique
Similarity:
Radu, C., Zlătescu, A. (1998)
Balkan Journal of Geometry and its Applications (BJGA)
Similarity:
Nadarajah, Saralees (2005)
Journal of Applied Mathematics
Similarity:
Nadarajah, Saralees, Gupta, Arjun K. (2005)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Krystyna Kędziora (1980)
Applicationes Mathematicae
Similarity:
Mridula Garg, Sangeeta Choudhary, Saralees Nadarajah (2009)
Applicationes Mathematicae
Similarity:
We derive the probability density function (pdf) for the product of three independent triangular random variables. It involves consideration of various cases and subcases. We obtain the pdf for one subcase and present the remaining cases in tabular form. We also indicate how to calculate the pdf for the product of n triangular random variables.
Antonín Špaček (1949)
Časopis pro pěstování matematiky a fysiky
Similarity:
Ch. Swartz, D. Myers (1971)
Studia Mathematica
Similarity:
Slobodanka Janković (1993)
Publications de l'Institut Mathématique
Similarity:
Zhang, Hu-Ming, Taylor, Robert L. (1995)
International Journal of Mathematics and Mathematical Sciences
Similarity:
Saralees Nadarajah, B. M. Golam Kibria (2006)
Applicationes Mathematicae
Similarity:
Burr distributions are some of the most versatile distributions in statistics. In this paper, a drought application is described by deriving the exact distributions of U = XY and W = X/(X+Y) when X and Y are independent Burr XII random variables. Drought data from the State of Nebraska are used.