Displaying similar documents to “Validity up to complementation in graph theory”

Stable graphs

Klaus-Peter Podewski, Martin Ziegler (1978)

Fundamenta Mathematicae

Similarity:

Universality for and in Induced-Hereditary Graph Properties

Izak Broere, Johannes Heidema (2013)

Discussiones Mathematicae Graph Theory

Similarity:

The well-known Rado graph R is universal in the set of all countable graphs I, since every countable graph is an induced subgraph of R. We study universality in I and, using R, show the existence of 2 א0 pairwise non-isomorphic graphs which are universal in I and denumerably many other universal graphs in I with prescribed attributes. Then we contrast universality for and universality in induced-hereditary properties of graphs and show that the overwhelming majority of induced-hereditary...

Characterization of Line-Consistent Signed Graphs

Daniel C. Slilaty, Thomas Zaslavsky (2015)

Discussiones Mathematicae Graph Theory

Similarity:

The line graph of a graph with signed edges carries vertex signs. A vertex-signed graph is consistent if every circle (cycle, circuit) has positive vertex-sign product. Acharya, Acharya, and Sinha recently characterized line-consistent signed graphs, i.e., edge-signed graphs whose line graphs, with the naturally induced vertex signature, are consistent. Their proof applies Hoede’s relatively difficult characterization of consistent vertex-signed graphs. We give a simple proof that does...

Note on enumeration of labeled split graphs

Vladislav Bína, Jiří Přibil (2015)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

The paper brings explicit formula for enumeration of vertex-labeled split graphs with given number of vertices. The authors derive this formula combinatorially using an auxiliary assertion concerning number of split graphs with given clique number. In conclusion authors discuss enumeration of vertex-labeled bipartite graphs, i.e., a graphical class defined in a similar manner to the class of split graphs.