The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Corrections to my papers “Some remarks on Menger's theorem” and “Alternating connectivity of digraphs””

k-Kernels and some operations in digraphs

Hortensia Galeana-Sanchez, Laura Pastrana (2009)

Discussiones Mathematicae Graph Theory

Similarity:

Let D be a digraph. V(D) denotes the set of vertices of D; a set N ⊆ V(D) is said to be a k-kernel of D if it satisfies the following two conditions: for every pair of different vertices u,v ∈ N it holds that every directed path between them has length at least k and for every vertex x ∈ V(D)-N there is a vertex y ∈ N such that there is an xy-directed path of length at most k-1. In this paper, we consider some operations on digraphs and prove the existence of k-kernels in digraphs formed...

A note on kernels and solutions in digraphs

Matúš Harminc, Roman Soták (1999)

Discussiones Mathematicae Graph Theory

Similarity:

For given nonnegative integers k,s an upper bound on the minimum number of vertices of a strongly connected digraph with exactly k kernels and s solutions is presented.