On a method of constructing ANR-sets. An application of inverse limits
J. Krasinkiewicz (1976)
Fundamenta Mathematicae
Similarity:
J. Krasinkiewicz (1976)
Fundamenta Mathematicae
Similarity:
T. Chapman (1972)
Fundamenta Mathematicae
Similarity:
Yukihiro Kodama (1975)
Fundamenta Mathematicae
Similarity:
A. Suszycki (1983)
Fundamenta Mathematicae
Similarity:
I. Berstein (1958)
Fundamenta Mathematicae
Similarity:
Taras Banakh, Vesko Valov (2010)
Open Mathematics
Similarity:
A metric space M is said to have the fibered approximation property in dimension n (briefly, M ∈ FAP(n)) if for any ɛ > 0, m ≥ 0 and any map g: m × n → M there exists a map g′: m × n → M such that g′ is ɛ-homotopic to g and dim g′ (z × n) ≤ n for all z ∈ m. The class of spaces having the FAP(n)-property is investigated in this paper. The main theorems are applied to obtain generalizations of some results due to Uspenskij [11] and Tuncali-Valov [10].
D. W. Curtis (1972)
Compositio Mathematica
Similarity:
Darryl McCullough, Leonard Rubin (1983)
Fundamenta Mathematicae
Similarity:
Gerard Venema (1980)
Fundamenta Mathematicae
Similarity:
Sławomir Nowak (1974)
Fundamenta Mathematicae
Similarity: