The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The covering property for σ-ideals of compact, sets”

Keeping the covering number of the null ideal small

Teruyuki Yorioka (2015)

Fundamenta Mathematicae

Similarity:

It is proved that ideal-based forcings with the side condition method of Todorcevic (1984) add no random reals. By applying Judah-Repický's preservation theorem, it is consistent with the covering number of the null ideal being ℵ₁ that there are no S-spaces, every poset of uniform density ℵ₁ adds ℵ₁ Cohen reals, there are only five cofinal types of directed posets of size ℵ₁, and so on. This extends the previous work of Zapletal (2004).

Strong covering without squares

Saharon Shelah (2000)

Fundamenta Mathematicae

Similarity:

Let W be an inner model of ZFC. Let κ be a cardinal in V. We say that κ-covering holds between V and W iff for all X ∈ V with X ⊆ ON and V ⊨ |X| < κ, there exists Y ∈ W such that X ⊆ Y ⊆ ON and V ⊨ |Y| < κ. Strong κ-covering holds between V and W iff for every structure M ∈ V for some countable first-order language whose underlying set is some ordinal λ, and every X ∈ V with X ⊆ λ and V ⊨ |X| < κ, there is Y ∈ W such that X ⊆ Y ≺ M and V ⊨ |Y| < κ.   We prove that if κ is...