Displaying similar documents to “Absolute-valued algebras with an involution”

On one-sided division infinite-dimensional normed real algebras.

José Antonio Cuenca Mira (1992)

Publicacions Matemàtiques

Similarity:

In this note we introduce the concept of Cayley homomorphism which is closely related with those of composition algebra and normalized orthogonal multiplication. The key result shows the existence of certain types of Cayley homomorphisms for infinite dimension. As an application we prove the existence of left division infinite-dimensional complete normed real algebras with left unity.

One-sided division absolute valued algebras.

Ana Rodríguez Palacios (1992)

Publicacions Matemàtiques

Similarity:

We develop a structure theory for left divsion absolute valued algebras which shows, among other things, that the norm of such an algebra comes from an inner product. Moreover, we prove the existence of left division complete absolute valued algebras with left unit of arbitrary infinite hilbertian division and with the additional property that they have nonzero proper closed left ideals. Our construction involves results from the representation theory of the so called "Canonical Anticommutation...

Nonassociative real H*-algebras.

Miguel Cabrera, José Martínez Aroza, Angel Rodríguez Palacios (1988)

Publicacions Matemàtiques

Similarity:

We prove that, if A denotes a topologically simple real (non-associative) H*-algebra, then either A is a topologically simple complex H*-algebra regarded as real H*-algebra or there is a topologically simple complex H*-algebra B with *-involution τ such that A = {b ∈ B : τ(b) = b*}. Using this, we obtain our main result, namely: (algebraically) isomorphic topologically simple real H*-algebras are actually *-isometrically isomorphic.