Metric characterizations of Banach spaces
J. E. Valentine, S. G. Wayment (1973)
Colloquium Mathematicae
Similarity:
J. E. Valentine, S. G. Wayment (1973)
Colloquium Mathematicae
Similarity:
Kuo-Wang Chen (1964)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Roman Sikorski (1948)
Colloquium Mathematicum
Similarity:
J. Halperin, Jr., S. Rolewicz, A. Shields (1968)
Colloquium Mathematicae
Similarity:
Bogdan Rzepecki (1979)
Annales Polonici Mathematici
Similarity:
Kocayusufoğlu, Ịsmail, Ada, Tuba (2006)
APPS. Applied Sciences
Similarity:
Sophocles K. Mercourakis, Georgios Vassiliadis (2018)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
Ehrhard Behrends, Vladimir M. Kadets (2001)
Studia Mathematica
Similarity:
A metric space (M,d) is said to have the small ball property (sbp) if for every ε₀ > 0 it is possible to write M as the union of a sequence (B(xₙ,rₙ)) of closed balls such that the rₙ are smaller than ε₀ and lim rₙ = 0. We study permanence properties and examples of sbp. The main results of this paper are the following: 1. Bounded convex closed sets in Banach spaces have sbp only if they are compact. 2. Precisely the finite-dimensional Banach spaces have sbp. (More generally: a complete...
J. Musielak, Z. Semadeni (1961)
Studia Mathematica
Similarity:
L. Loveland, J. Valentine (1978)
Fundamenta Mathematicae
Similarity: