The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On distributive n-lattices and n-quasilattices”

Meet-distributive lattices have the intersection property

Henri Mühle (2023)

Mathematica Bohemica

Similarity:

This paper is an erratum of H. Mühle: Distributive lattices have the intersection property, Math. Bohem. (2021). Meet-distributive lattices form an intriguing class of lattices, because they are precisely the lattices obtainable from a closure operator with the so-called anti-exchange property. Moreover, meet-distributive lattices are join semidistributive. Therefore, they admit two natural secondary structures: the core label order is an alternative order on the lattice elements and...

Distributive lattices with a given skeleton

Joanna Grygiel (2004)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

We present a construction of finite distributive lattices with a given skeleton. In the case of an H-irreducible skeleton K the construction provides all finite distributive lattices based on K, in particular the minimal one.

A Note on Distributive Triples

Marcin Łazarz (2019)

Bulletin of the Section of Logic

Similarity:

Even if a lattice L is not distributive, it is still possible that for particular elements x, y, z ∈ L it holds (x∨y) ∧z = (x∧z) ∨ (y ∧z). If this is the case, we say that the triple (x, y, z) is distributive. In this note we provide some sufficient conditions for the distributivity of a given triple.

Characterizations of 0-distributive posets

Vinayak V. Joshi, B. N. Waphare (2005)

Mathematica Bohemica

Similarity:

The concept of a 0-distributive poset is introduced. It is shown that a section semicomplemented poset is distributive if and only if it is 0-distributive. It is also proved that every pseudocomplemented poset is 0-distributive. Further, 0-distributive posets are characterized in terms of their ideal lattices.