The Tychonoff product theorem for compact Hausdorff spaces does not imply the axiom of choice: A new Proof. equivalent propositions.
B. R. Salinas, F. Bombal (1973)
Collectanea Mathematica
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
B. R. Salinas, F. Bombal (1973)
Collectanea Mathematica
Similarity:
D. Edwards (1975)
Fundamenta Mathematicae
Similarity:
J. Halperin (1964)
Fundamenta Mathematicae
Similarity:
Miroslav Repický (2015)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We present a proof of the Boolean Prime Ideal Theorem in a transitive model of ZF in which the Axiom of Choice does not hold. We omit the argument based on the full Halpern-Läuchli partition theorem and instead we reduce the proof to its elementary case.
Eric Schechter (2006)
Fundamenta Mathematicae
Similarity:
The principle that "any product of cofinite topologies is compact" is equivalent (without appealing to the Axiom of Choice) to the Boolean Prime Ideal Theorem.
G. Gardiner (1974)
Fundamenta Mathematicae
Similarity:
J. Łoś, Czesław Ryll-Nardzewski (1955)
Fundamenta Mathematicae
Similarity:
J. Bell (1988)
Fundamenta Mathematicae
Similarity:
J. Łoś (1957)
Fundamenta Mathematicae
Similarity: